Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Am Soc Nephrol ; 35(3): 311-320, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261535

RESUMO

SIGNIFICANCE STATEMENT: Metabolic acidosis is a common complication of CKD and is associated with more rapid decline of kidney function, but well-powered controlled randomized trials testing the effect of treating metabolic acidosis on slowing CKD progression have not been conducted. The VALOR-CKD study randomized 1480 individuals with CKD and metabolic acidosis, across 320 sites to placebo or veverimer (a novel hydrochloric acid binder). The findings did not demonstrate the efficacy of veverimer in slowing CKD progression, but the difference in serum bicarbonate between placebo and drug arms was only approximately 1 mEq/L. Veverimer was safe and well tolerated. BACKGROUND: Metabolic acidosis is common in CKD, but whether its treatment slows CKD progression is unknown. Veverimer, a novel hydrochloric acid binder that removes acid from the gastrointestinal tract, leads to an increase in serum bicarbonate. METHODS: In a phase 3, double-blind, placebo-controlled trial, patients with CKD (eGFR of 20-40 ml/min per 1.73 m 2 ) and metabolic acidosis (serum bicarbonate of 12-20 mEq/L) from 35 countries were randomized to veverimer or placebo. The primary outcome was the composite end point of CKD progression, defined as the development of ESKD (kidney transplantation or maintenance dialysis), a sustained decline in eGFR of ≥40% from baseline, or death due to kidney failure. RESULTS: The mean (±SD) baseline eGFR was 29.2±6.3 ml/min per 1.73 m 2 , and serum bicarbonate was 17.5±1.4 mEq/L; this increased to 23.4±2.0 mEq/L after the active treatment run-in. After randomized withdrawal, the mean serum bicarbonate was 22.0±3.0 mEq/L and 20.9±3.3 mEq/L in the veverimer and placebo groups at month 3, and this approximately 1 mEq/L difference remained stable for the first 24 months. A primary end point event occurred in 149/741 and 148/739 patients in the veverimer and placebo groups, respectively (hazard ratio, 0.99; 95% confidence interval, 0.8 to 1.2; P = 0.90). Serious and overall adverse event incidence did not differ between the groups. CONCLUSIONS: Among patients with CKD and metabolic acidosis, treatment with veverimer did not slow CKD progression. The lower than expected bicarbonate separation may have hindered the ability to test the hypothesis. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: VALOR-CKD, NCT03710291 .


Assuntos
Acidose , Polímeros , Insuficiência Renal Crônica , Humanos , Bicarbonatos/uso terapêutico , Ácido Clorídrico , Acidose/tratamento farmacológico , Acidose/etiologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
2.
Nephron ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262368

RESUMO

BACKGROUND/AIMS: Hypercalciuria is the most common identifiable risk factor predisposing to CaOx stone formation. Increased oral magnesium intake may lead to decreased CaOx stone formation by binding intestinal Ox leading to decreased absorption and/or binding urinary Ox to decrease urinary supersaturation. This study assessed the effect of oral magnesium on 24-hour urine ion excretion, supersaturation, and kidney stone formation in a genetic hypercalciuric stone-forming (GHS) rat model of human idiopathic hypercalciuria. METHODS: When fed the oxalate precursor, hydroxyproline, every GHS rat develops CaOx stones. The GHS rats were fed a normal calcium and phosphorus diet with hydroxyproline to induce CaOx , were divided into three groups of ten rats per group: control diet with 4.0 g/kg MgO, low MgO diet (0.5 g/kg), and high MgO diet (8 g/kg). At 6 weeks, twenty-four-hour urines were collected, and urine chemistry and supersaturation were determined. Stone formation was quantified. RESULTS: The GHS rats fed the low and high Mg diets had a significant reduction and increase, respectively, in urinary Mg compared to those fed the control diet. Dietary Mg did not alter urine Ca excretion while the low Mg diet led to a significant fall in urinary Ox. Urine supersaturation with respect to CaOx was significantly increased with low Mg, whereas urine supersaturation was significantly decreased with high Mg. There was no effect of dietary Mg on stone formation within 6 weeks of treatment. CONCLUSION: Dietary magnesium decreases urine supersaturation but not CaOx stone formation in GHS rats.

3.
Clin Kidney J ; 16(7): 1113-1121, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37398692

RESUMO

Background: Epidemiological studies demonstrate an association between kidney stones and risk of chronic kidney disease (CKD) and CKD progression. Metabolic acidosis, as a consequence of CKD, results in a reduced urine pH which promotes the formation of some types of kidney stones and inhibits the formation of others. While metabolic acidosis is a risk factor for CKD progression, the association of serum bicarbonate with risk of incident kidney stones is not well understood. Methods: We used an Integrated Claims-Clinical dataset of US patients to generate a cohort of patients with non-dialysis-dependent CKD with two serum bicarbonate values of 12 to <22 mmol/L (metabolic acidosis) or 22 to <30 mmol/L (normal serum bicarbonate). Primary exposure variables were baseline serum bicarbonate and change in serum bicarbonate over time. Cox proportional hazards models evaluated time to first occurrence of kidney stones during a median 3.2-year follow-up. Results: A total of 142 884 patients qualified for the study cohort. Patients with metabolic acidosis experienced post-index date kidney stones at greater frequency than patients with normal serum bicarbonate at the index date (12.0% vs 9.5%, P < .0001). Both lower baseline serum bicarbonate [hazard ratio (HR) 1.047; 95% confidence interval (CI) 1.036-1.057] and decreasing serum bicarbonate over time (HR 1.034; 95% CI 1.026-1.043) were associated with increased risk of kidney stone development. Conclusions: Metabolic acidosis was associated with a higher incidence of kidney stones and shorter time to incident stone formation in patients with CKD. Future studies may investigate the role of correcting metabolic acidosis to prevent stone formation.

4.
Am J Kidney Dis ; 82(1): 97-104, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965827

RESUMO

RATIONALE & OBJECTIVE: Patients with chronic kidney disease (CKD), hyperkalemia (serum potassium [sK+]>5.0 mEq/L), and hyperphosphatemia experience poor clinical outcomes. Patiromer, a potassium binder that uses calcium as the exchange ion, may also reduce serum phosphorus (sP). We characterized the effect of patiromer on sP in patients with CKD, hyperkalemia, and hyperphosphatemia. STUDY DESIGN: A post hoc pooled analysis of individual-level data from the AMETHYST-DN, OPAL-HK, and TOURMALINE trials of patiromer. SETTING & PARTICIPANTS: Patients with CKD and hyperkalemia. EXPOSURE: Patients treated with patiromer (8.4-33.6 g/day). OUTCOME: Mean changes from baseline in sP, sK+, serum calcium (sCa2+), and serum magnesium (sMg2+) after 2 and 4 weeks of treatment. ANALYTICAL APPROACH: Descriptive statistics to summarize pooled data on the study outcomes from the 3 studies. RESULTS: We included 578 patients in the analysis. Of these participants, 86 patients (14.9%) had baseline hyperphosphatemia of whom 75.6% (65 of 86) had CKD stage 4/5 and 31.1% (153 of 492) with sP≤4.5mg/dL had CKD stage 4/5. Among the patients with elevated sP and sK+at baseline, the mean±SD reduction in sP and sK+after 4 weeks of patiromer treatment was-0.62±1.09mg/dL and-0.71± 0.51 mEq/L, respectively. Additionally, the mean±SD reduction in sMg2+in these patients was -0.25±0.23mg/dL while sCa2+remained unchanged. Both sMg2+and sCa2+remained within the normal range. Patiromer was generally well tolerated, and no serious adverse events were considered related to patiromer. LIMITATIONS: These were post hoc analyses, no placebo comparison was performed due to the design of the original studies, and the follow-up period was limited to 4 weeks. CONCLUSIONS: Reductions in sP and sK+to the normal range were observed after 2 weeks of patiromer treatment, and the reduction was sustained during 4 weeks of treatment among patients with non-dialysis-dependent CKD, hyperkalemia, and hyperphosphatemia. Future controlled trials are needed to establish if patiromer is useful to reduce both sK+and sP in hyperkalemic patients with CKD and hyperphosphatemia.


Assuntos
Hiperpotassemia , Hiperfosfatemia , Insuficiência Renal Crônica , Humanos , Hiperpotassemia/tratamento farmacológico , Hiperfosfatemia/tratamento farmacológico , Hiperfosfatemia/etiologia , Cálcio , Potássio , Fósforo
5.
Nephrol Dial Transplant ; 38(6): 1448-1458, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36331426

RESUMO

BACKGROUND: Whether treating metabolic acidosis slows progression of chronic kidney disease (CKD) has not been established. Veverimer is a novel hydrochloric acid binder that removes acid from the gastrointestinal tract leading to an increase in serum bicarbonate; it is being developed to treat metabolic acidosis with the goal of slowing progression of CKD. METHODS: The VALOR-CKD trial is an international, randomized, multicenter, double-blind, placebo-controlled study designed to evaluate the effect of once-daily veverimer on kidney disease progression in patients with metabolic acidosis and CKD. Eligibility criteria include a serum bicarbonate in the range of 12-20 mmol/L and an estimated glomerular filtration rate (eGFR) of 20-40 mL/min/1.73 m2. The primary outcome is kidney disease progression defined as the development of end-stage kidney disease, a sustained decline in eGFR of >40% from baseline or death due to kidney failure. Key secondary endpoints include effects on physical function. RESULTS: Between December 2018 and December 2021, 1480 participants were randomized. The mean age at baseline was 65.1 years and 42% of the patients were female. The mean baseline eGFR was 29.1 mL/min/1.73 m2 and mean serum bicarbonate was 17.5 mmol/L. The median urine albumin-to-creatinine ratio at screening was 201 mg/g and the median 5-year predicted risk of kidney failure was 32%. Diabetes and hypertension were present in 56% and 98% of participants, respectively. CONCLUSIONS: VALOR-CKD has recruited a large population of people with metabolic acidosis at high risk for CKD progression to determine the effects of veverimer on the risk of progressive loss of kidney function.


Assuntos
Acidose , Insuficiência Renal Crônica , Humanos , Feminino , Masculino , Bicarbonatos/uso terapêutico , Acidose/tratamento farmacológico , Acidose/etiologia , Taxa de Filtração Glomerular , Método Duplo-Cego , Progressão da Doença
6.
JBMR Plus ; 6(12): e10691, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36530191

RESUMO

Metabolic acidosis (MET) stimulates bone resorption through inhibition of osteoblast (OB) bone formation and stimulation of osteoclast (OC) bone resorption. We found that OGR1, a G protein-coupled proton (H+)-sensing receptor, was critical for initial H+ signaling in the OB. In mice with a global deletion of OGR1, we demonstrated that loss of OGR1 impairs H+-induced bone resorption, leading to increased bone density through effects on both the OB and OC. Using an OC-specific deletion of OGR1, we found that MET directly activates OGR1 in the OC. To determine if the response of OGR1 to MET in the OB is independent of a response in OCs and to characterize direct activation of OGR1 in the OB, we studied female mice with an OB-specific deletion of OGR1 (OB-cKO) and differentiated osteoblasts derived from marrow of OB-cKO and wild-type (WT) mice. In OB-cKO mice, we found increased bone area in both tibial and femoral cortical bone. Specific loss of OB OGR1 increased in vitro mineralization, alkaline phosphatase activity, and expression of osteoblast-specific genes compared with WT with no alteration in OC activity. MET stimulation of OB cox2 and fgf23 gene expression was inhibited in OB-cKO OB. These results indicate that MET activation of OGR1 in the OB is independent of the response in the OC and that OGR1 in both cell types is required for a complete response to MET. Characterization of the role of OGR1 in MET-induced bone resorption will improve our understanding of bone loss associated with metabolic acidosis in patients with chronic kidney disease. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
Elife ; 112022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35942681

RESUMO

For the treatment of postmenopausal osteoporosis, several drug classes with different mechanisms of action are available. Since only a limited set of dosing regimens and drug combinations can be tested in clinical trials, it is currently unclear whether common medication strategies achieve optimal bone mineral density gains or are outperformed by alternative dosing schemes and combination therapies that have not been explored so far. Here, we develop a mathematical framework of drug interventions for postmenopausal osteoporosis that unifies fundamental mechanisms of bone remodeling and the mechanisms of action of four drug classes: bisphosphonates, parathyroid hormone analogs, sclerostin inhibitors, and receptor activator of NF-κB ligand inhibitors. Using data from several clinical trials, we calibrate and validate the model, demonstrating its predictive capacity for complex medication scenarios, including sequential and parallel drug combinations. Via simulations, we reveal that there is a large potential to improve gains in bone mineral density by exploiting synergistic interactions between different drug classes, without increasing the total amount of drug administered.


Our bones are constantly being renewed in a fine-tuned cycle of destruction and formation that helps keep them healthy and strong. However, this process can become imbalanced and lead to osteoporosis, where the bones are weakened and have a high risk of fracturing. This is particularly common post-menopause, with one in three women over the age of 50 experiencing a broken bone due to osteoporosis. There are several drug types available for treating osteoporosis, which work in different ways to strengthen bones. These drugs can be taken individually or combined, meaning that a huge number of drug combinations and treatment strategies are theoretically possible. However, it is not practical to test the effectiveness of all of these options in human trials. This could mean that patients are not getting the maximum potential benefit from the drugs available. Jörg et al. developed a mathematical model to predict how different osteoporosis drugs affect the process of bone renewal in the human body. The model could then simulate the effect of changing the order in which the therapies were taken, which showed that the sequence had a considerable impact on the efficacy of the treatment. This occurs because different drugs can interact with each other, leading to an improved outcome when they work in the right order. These results suggest that people with osteoporosis may benefit from altered treatment schemes without changing the type or amount of medication taken. The model could suggest new treatment combinations that reduce the risk of bone fracture, potentially even developing personalised plans for individual patients based on routine clinical measurements in response to different drugs.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Densidade Óssea , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Osteoporose/tratamento farmacológico , Osteoporose Pós-Menopausa/tratamento farmacológico
8.
Genes Dis ; 9(3): 797-806, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782986

RESUMO

Human idiopathic hypercalciuria (IH) is the most common cause of calcium oxalate nephrolithiasis with perturbed calcium metabolism with increased bone resorption and decreased renal calcium reabsorption, which can be phenotype-copied in the genetic hypercalciuric stone-forming (GHS) rat model. We previously demonstrated that high VDR expression plays important roles in the development of hypercalciuria in the GHS rats. However, the underlying mechanism through which VDR impact hypercalciuria development remains to be fully understood. Here, we sought to determine how VDR regulated its target genes that are implicated in calcium homeostasis and potentially hypercalciuria. We found that VDR expression in the GHS rats was elevated in the calcium transporting tissues, as well as in the thymus and prostate, but not in lung, brain, heart, liver and spleen, when compared with control SD rats. Snail expression in the GHS rats was significantly downregulated in kidney, intestine, thymus and testis. Intraperitoneal injection of 1,25(OH)2D3 significantly upregulated the expression of renal calcium sensing receptor (CaSR), intestinal calcium transporters transient receptor potential vanilloid type 6 (TRPV6), and VDR in GHS rats, compared with that in control SD rats. ChIP assays revealed that VDR specifically bound to the proximal promoters of target genes, followed by histone H3 hyperacetylation or hypermethylation. Collectively, our results suggest that elevated VDR expression may contribute to the development of hypercalciuria by sensitizing VDR target genes to 1,25(OH)2D3 through histone modifications at their promoter regions in a genetic hypercalciuric stone-forming (GHS) rat model.

9.
Am J Med ; 135(9): 1051-1058, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35576995

RESUMO

Increasing adverse outcomes in patients with chronic kidney disease reflect growth of patients with early-stage chronic kidney disease and their increasing per population rates of these outcomes. Progression of chronic kidney disease, more than current level of kidney function, is the primary driver of adverse chronic kidney disease-related outcomes. Racial/ethnic minorities progress faster to end-stage kidney disease with greater risk for adverse outcomes. Diabetes and hypertension cause two-thirds of end-stage kidney disease, for which primary medical care integrated with healthy eating and increased physical activity (healthy moving) slows chronic kidney disease progression. Patients with early-stage chronic kidney disease are appropriately managed by primary care practices but most lack infrastructure to facilitate this integration that reduces adverse chronic kidney disease-related outcomes. Individuals of low socioeconomic status are at greater chronic kidney disease risk, and flexible regulatory options in Medicaid can fund infrastructure to facilitate healthy eating and healthy moving integration with primary medical care. This integration promises to reduce chronic kidney disease-related adverse outcomes, disproportionately in racial/ethnic minorities, and thereby reduce chronic kidney disease-related health disparities.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Dieta Saudável , Progressão da Doença , Etnicidade , Nível de Saúde , Humanos , Falência Renal Crônica/etiologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/prevenção & controle , Estados Unidos
10.
Kidney Int ; 101(6): 1160-1170, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351460

RESUMO

The homeostatic regulation of a stable systemic pH is of critical importance for mammalian survival. During metabolic acidosis (a reduction in systemic pH caused by a primary decrease in serum bicarbonate concentration), as seen in clinical disorders such as the later stages of chronic kidney disease, renal tubular acidosis, or chronic diarrhea, bone buffers the accumulated acid; however, this homeostatic function of the skeleton occurs at the expense of the bone mineral content and leads to decreased bone quality. During short-term studies to model acute metabolic acidosis, there is initial physiochemical bone mineral dissolution, releasing carbonate and phosphate proton buffers into the extracellular fluid. In addition, there is net proton influx into the mineral with release of bone sodium and potassium. During long-term studies to model chronic metabolic acidosis, there is also inhibition of osteoblast activity, resulting in reduced bone formation, and an increase in osteoclast activity, resulting in increased bone resorption and release of calcium and anionic proton buffers. These physicochemical and cell-mediated bone responses to metabolic acidosis, in addition to an acidosis-induced increased urine calcium excretion, without a corresponding increase in intestinal calcium absorption, induce a net loss of body calcium that is almost certainly derived from the mineral stores of bone.


Assuntos
Acidose , Cálcio , Acidose/etiologia , Animais , Osso e Ossos/metabolismo , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Mamíferos/metabolismo , Fosfatos , Prótons
11.
BMC Nephrol ; 23(1): 82, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216581

RESUMO

BACKGROUND: Globally, the prevalence of chronic kidney disease (CKD) is higher in women than in men; however, women have been historically under-represented in nephrology clinical trials. Metabolic acidosis increases risk of progressive loss of kidney function, causes bone demineralization and muscle protein catabolism, and may be more consequential in women given their lower bone and muscle mass. Veverimer, an investigational, non-absorbed polymer that binds and removes gastrointestinal hydrochloric acid, is being developed as treatment for metabolic acidosis. METHODS: This was a Phase 3, multicenter, randomised, blinded, placebo-controlled trial in 196 patients with CKD (eGFR: 20-40 mL/min/1.73 m2) and metabolic acidosis who were treated for up to 1 year with veverimer or placebo. We present the findings from a pre-specified subgroup analysis evaluating the effects of veverimer on metabolic acidosis and physical function among women (N = 77) enrolled in this trial. RESULTS: At week 52, women treated with veverimer had a greater increase in mean (± standard error) serum bicarbonate than the placebo group (5.4 [0.5] vs. 2.2 [0.6] mmol/L; P < 0.0001). Physical Function reported by patients on the Kidney Disease and Quality of Life - Physical Function Domain, a measure that includes items related to walking, stair climbing, carrying groceries and other activities improved significantly in women randomized to veverimer vs placebo (+ 13.2 vs. -5.2, respectively, P < 0.0031). Objectively measured performance time on the repeated chair stand test also improved significantly in the veverimer group vs. placebo (P = 0.0002). CONCLUSIONS: Veverimer was effective in treating metabolic acidosis in women with CKD, and significantly improved how they felt and functioned. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03390842 . Registered on January 4, 2018.


Assuntos
Acidose/sangue , Acidose/tratamento farmacológico , Acidose/fisiopatologia , Bicarbonatos/sangue , Polímeros/uso terapêutico , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/fisiopatologia , Acidose/complicações , Idoso , Método Duplo-Cego , Feminino , Humanos , Pessoa de Meia-Idade , Insuficiência Renal Crônica/complicações
12.
Kidney360 ; 2(2): 279-289, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34723191

RESUMO

BACKGROUND: A better understanding of the pathophysiology involving coronary artery calcification (CAC) in patients on hemodialysis (HD) will help to develop new therapies. We sought to identify the differences in metabolomics profiles between patients on HD with and without CAC. METHODS: In this case-control study, nested within a cohort of 568 incident patients on HD, the cases were patients without diabetes with a CAC score >100 (n=51), and controls were patients without diabetes with a CAC score of zero (n=48). We measured 452 serum metabolites in each participant. Metabolites and pathway scores were compared using Mann-Whitney U tests, partial least squares-discriminant analyses, and pathway enrichment analyses. RESULTS: Compared with controls, cases were older (64±13 versus 42±12 years) and were less likely to be Black (51% versus 94%). We identified three metabolites in bile-acid synthesis (chenodeoxycholic, deoxycholic, and glycolithocholic acids) and one pathway (arginine/proline metabolism). After adjusting for demographics, higher levels of chenodeoxycholic, deoxycholic, and glycolithocholic acids were associated with higher odds of having CAC; comparing the third with the first tertile of each bile acid, the OR was 6.34 (95% CI, 1.12 to 36.06), 6.73 (95% CI, 1.20 to 37.82), and 8.53 (95% CI, 1.50 to 48.49), respectively. These associations were no longer significant after further adjustment for coronary artery disease and medication use. Per 1 unit higher in the first principal component score, arginine/proline metabolism was associated with CAC after adjusting for demographics (OR, 1.83; 95% CI, 1.06 to 3.15), and the association remained significant with additional adjustments for statin use (OR, 1.84; 95% CI, 1.04 to 3.27). CONCLUSIONS: Among patients on HD without diabetes mellitus, chenodeoxycholic, deoxycholic, and glycolithocholic acids may be potential biomarkers for CAC, and arginine/proline metabolism is a plausible mechanism to study for CAC. These findings need to be confirmed in future studies.


Assuntos
Doença da Artéria Coronariana , Calcificação Vascular , Biomarcadores , Estudos de Casos e Controles , Humanos , Metabolômica , Diálise Renal/efeitos adversos
14.
Front Med (Lausanne) ; 8: 704970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595186

RESUMO

Background: Personalized management of secondary hyperparathyroidism is a critical part of hemodialysis patient care. We used a mathematical model of parathyroid gland (PTG) biology to predict (1) short-term peridialytic intact PTH (iPTH) changes in response to diffusive calcium (Ca) fluxes and (2) to predict long-term iPTH levels. Methods: We dialyzed 26 maintenance hemodialysis patients on a single occasion with a dialysate Ca concentration of 1.75 mmol/l to attain a positive dialysate-to-blood ionized Ca (iCa) gradient and thus diffusive Ca loading. Intradialytic iCa kinetics, peridialytic iPTH change, and dialysate-sided iCa mass balance (iCaMB) were assessed. Patient-specific PTG model parameters were estimated using clinical, medication, and laboratory data. We then used the personalized PTG model to predict peridialytic and long-term (6-months) iPTH levels. Results: At dialysis start, the median dialysate-to-blood iCa gradient was 0.3 mmol/l (IQR 0.11). The intradialytic iCa gain was 488 mg (IQR 268). Median iPTH decrease was 75% (IQR 15) from pre-dialysis 277 to post-dialysis 51 pg/ml. Neither iCa gradient nor iCaMB were significantly associated with peridialytic iPTH changes. The personalized PTG model accurately predicted both short-term, treatment-level peridialytic iPTH changes (r = 0.984, p < 0.001, n = 26) and patient-level 6-months iPTH levels (r = 0.848, p < 0.001, n = 13). Conclusions: This is the first report showing that both short-term and long-term iPTH dynamics can be predicted using a personalized mathematical model of PTG biology. Prospective studies are warranted to explore further model applications, such as patient-level prediction of iPTH response to PTH-lowering treatment.

15.
Am J Physiol Renal Physiol ; 321(4): F424-F430, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34396788

RESUMO

Chronic metabolic acidosis stimulates cell-mediated net Ca2+ efflux from bone mediated by increased osteoblastic cyclooxygenase 2, leading to prostaglandin E2-induced stimulation of receptor activator of NF-κB ligand-induced osteoclastic bone resorption. Ovarian cancer G protein-coupled receptor-1 (OGR1), an osteoblastic H+-sensing G protein-coupled receptor, is activated by acidosis and leads to increased bone resorption. As regulator of G protein signaling (RGS) proteins limit GPCR signaling, we tested whether RGS proteins themselves are regulated by metabolic acidosis. Primary osteoblasts were isolated from neonatal mouse calvariae and incubated in physiological neutral or acidic (MET) medium. Cells were collected, and RNA was extracted for real-time PCR analysis with mRNA levels normalized to ribosomal protein L13a. RGS1, RGS2, RGS3, RGS4, RGS10, RGS11, and RGS18 mRNA did not differ between MET and neutral medium; however, by 30 min, MET decreased RGS16, which persisted for 60 min and 3 h. Incubation of osteoblasts with the OGR1 inhibitor CuCl2 inhibited the MET-induced increase in RGS16 mRNA. Gallein, a specific inhibitor of Gßγ signaling, was used to determine if downstream signaling by the ßγ-subunit was critical for the response to acidosis. Gallein decreased net Ca2+ efflux from calvariae and cyclooxygenase 2 and receptor activator of NF-κB ligand gene expression from isolated osteoblasts. These results indicate that regulation of RGS16 plays an important role in modulating the response of the osteoblastic GPCR OGR1 to metabolic acidosis and subsequent stimulation of osteoclastic bone resorption.NEW & NOTEWORTHY The results presented in this study indicate that regulation of regulator of G protein signaling 16 and G protein signaling in the osteoblast plays an important role in modulating the response of osteoblastic ovarian cancer G protein-coupled receptor 1 (OGR1) to metabolic acidosis and the subsequent stimulation of osteoclastic bone resorption. Further characterization of the regulation of OGR1 in metabolic acidosis-induced bone resorption will help in understanding bone loss in acidotic patients with chronic kidney disease.


Assuntos
Acidose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Osteoblastos/metabolismo , Proteínas RGS/metabolismo , Animais , Bicarbonatos/administração & dosagem , Bicarbonatos/farmacologia , Dióxido de Carbono , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Concentração de Íons de Hidrogênio , Camundongos , Proteínas RGS/genética , RNA/genética , RNA/metabolismo , Xantenos/farmacologia
16.
Clin J Am Soc Nephrol ; 16(5): 736-745, 2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-33835939

RESUMO

BACKGROUND AND OBJECTIVES: In the CaLIPSO study, intravenous administration of SNF472 (300 or 600 mg) during hemodialysis significantly attenuated progression of coronary artery and aortic valve calcification. SNF472 selectively inhibits formation of hydroxyapatite, the final step in cardiovascular calcification. Because bone mineral is predominantly hydroxyapatite, we assessed changes in bone mineral density in CaLIPSO. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Patients with coronary artery calcification at screening (Agatston score of 100-3500 U) were randomized 1:1:1 to receive placebo, 300 mg SNF472, or 600 mg SNF472 as an intravenous infusion during hemodialysis three times weekly for 52 weeks. Dual-energy x-ray absorptiometry (DXA) scans were obtained at baseline (screening) and end of treatment, and between-group changes from baseline were compared using analysis of covariance. RESULTS: Among 274 randomized patients, 202 had evaluable DXA scans at baseline and postrandomization (the DXA-modified intention-to-treat population). Mean (95% confidence interval) changes in total-hip bone mineral density from baseline to week 52 were -1.5% (-2.7% to -0.3%), -1.5% (-2.7% to -0.4%), and -2.5% (-3.8% to -1.2%) in the placebo, 300 mg SNF472, and 600 mg SNF472 groups, respectively. Mean (95% confidence interval) changes in femoral-neck bone mineral density from baseline to week 52 were -0.3% (-1.6% to 1.0%), -1.0% (-2.3% to 0.2%), and -2.6% (-4.0% to -1.3%), respectively. Regression analyses showed no correlation between change in coronary artery calcium volume and change in bone mineral density at either location. Changes in serum alkaline phosphatase, calcium, magnesium, phosphate, and intact parathyroid hormone levels were similar across treatment groups. Clinical fracture events were reported for four of 90, three of 92, and six of 91 patients in the placebo, 300 mg SNF472, and 600 mg SNF472 groups, respectively. CONCLUSIONS: Bone mineral density decreased modestly in all groups over 1 year. In the 600 mg SNF472 group, the reduction appeared more pronounced. Reported fractures were infrequent in all groups. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Effect of SNF472 on Progression of Cardiovascular Calcification in End-Stage-Renal-Disease (ESRD) Patients on Hemodialysis (HD), NCT02966028.


Assuntos
Densidade Óssea/efeitos dos fármacos , Ácido Fítico/farmacologia , Diálise Renal , Adulto , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Clin Kidney J ; 14(1): 366-374, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33564440

RESUMO

BACKGROUND: The objective of CaLIPSO, a Phase 2b, randomized, double-blind, placebo-controlled clinical trial, is to test the hypothesis that myo-inositol hexaphosphate (SNF472) attenuates the progression of cardiovascular calcification in patients receiving maintenance haemodialysis. Here we report the trial design and baseline characteristics of trial participants. METHODS: Adult patients on maintenance haemodialysis (≥6 months) with an Agatston coronary artery calcium score, as measured by a multidetector computed tomography scanner, of 100-3500 U were enrolled. Patients were stratified by Agatston score (100-<400, 400-1000 or >1000 U) and randomized in a 1:1:1 ratio to receive placebo, SNF472 300 mg or SNF472 600 mg administered intravenously three times weekly during each haemodialysis session. RESULTS: Overall, 274 patients were randomized. The mean age of trial participants was 63.6 (standard deviation 8.9) years and 39% were women. The coronary artery, aorta and aortic valve median (25th-75th percentile) Agatston scores at baseline were 730 U (315-1435), 1728 U (625-4978) and 103 U (31-262), respectively, and the median (25th-75th percentile) calcium volume scores at baseline were 666 (310-1234), 1418 (536-4052) and 107 (38-278), respectively. Older age and diabetes mellitus were associated with higher calcium scores at baseline. CONCLUSIONS: The CaLIPSO trial enrolled patients on haemodialysis with pre-existent cardiovascular calcification to test the hypothesis that SNF472 attenuates its progression in the coronary arteries, aorta and aortic valve.

18.
Kidney Int ; 99(5): 1118-1126, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33417997

RESUMO

To study human idiopathic hypercalciuria we developed an animal model, genetic hypercalciuric stone-forming rats, whose pathophysiology parallels that of human idiopathic hypercalciuria. Fed the oxalate precursor, hydroxyproline, every rat in this model develops calcium oxalate stones. Using this rat model, we tested whether chlorthalidone and potassium citrate combined would reduce calcium oxalate stone formation and improve bone quality more than either agent alone. These rats (113 generation) were fed a normal calcium and phosphorus diet with hydroxyproline and divided into four groups: diets plus potassium chloride as control, potassium citrate, chlorthalidone plus potassium chloride, or potassium citrate plus chlorthalidone. Urine was collected at six, 12, and 18 weeks and kidney stone formation and bone parameters were determined. Compared to potassium chloride, potassium citrate reduced urinary calcium, chlorthalidone reduced it further and potassium citrate plus chlorthalidone even further. Potassium citrate plus chlorthalidone decreased urine oxalate compared to all other groups. There were no significant differences in calcium oxalate supersaturation in any group. Neither potassium citrate nor chlorthalidone altered stone formation. However, potassium citrate plus chlorthalidone significantly reduced stone formation. Vertebral trabecular bone increased with chlorthalidone and potassium citrate plus chlorthalidone. Cortical bone area increased with chlorthalidone but not potassium citrate or potassium citrate plus chlorthalidone. Mechanical properties of trabecular bone improved with chlorthalidone, but not with potassium citrate plus chlorthalidone. Thus in genetic hypercalciuric stone-forming rats fed a diet resulting in calcium oxalate stone formation, potassium citrate plus chlorthalidone prevented stone formation better than either agent alone. Chlorthalidone alone improved bone quality, but adding potassium citrate provided no additional benefit.


Assuntos
Cálculos Renais , Citrato de Potássio , Animais , Cálcio , Oxalato de Cálcio , Clortalidona , Hipercalciúria , Cálculos Renais/genética , Cálculos Renais/prevenção & controle , Ratos
19.
Urolithiasis ; 49(3): 185-193, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33161469

RESUMO

Antibiotics can alter the gut microbiome (GMB), which may be associated with stone disease. We sought to determine the effect that antibiotics have on the GMB, urine ion excretion and stone formation in genetic hypercalciuric stone-forming (GHS) rats. 116th generation GHS rats were fed a fixed amount of a normal calcium (1.2%) and phosphate (0.65%) diet, and divided into three groups (n = 10): control (CTL) diet, or supplemented with ciprofloxacin (Cipro, 5 mg/day) or Bactrim (250 mg/day). Urine and fecal pellets were collected over 6, 12 and 18 weeks. Fecal DNA was amplified across the 16S rRNA V4 region. At 18 weeks, kidney stone formation was visualized by Faxitron and blindly assessed by three investigators. After 18 weeks, urine calcium and oxalate decreased with Bactrim compared to CTL and Cipro. Urine pH increased with Bactrim compared to CTL and Cipro. Urine citrate increased with Cipro compared to CTL and decreased by half with Bactrim. Calcification increased with Bactrim compared to CTL and Cipro. Increased microbial diversity correlated with decreased urinary oxalate in all animals (R = - 0.46, p = 0.006). A potential microbial network emerged as significantly associated with shifts in urinary pH. Bactrim and Cipro differentially altered the GMB of GHS rats. The Bactrim group experienced a decrease in urine calcium, increased CaP supersaturation and increased calcification. The GMB is likely a contributing factor to changes in urine chemistry, supersaturation and stone risk. Further investigation is required to fully understand the association between antibiotics, the GMB and kidney stone formation.


Assuntos
Antibacterianos/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Hipercalciúria/complicações , Cálculos Renais/etiologia , Administração Oral , Animais , Antibacterianos/administração & dosagem , Cálcio/metabolismo , Cálcio/urina , Ciprofloxacina/administração & dosagem , Ciprofloxacina/efeitos adversos , Modelos Animais de Doenças , Fezes/microbiologia , Humanos , Hipercalciúria/genética , Hipercalciúria/microbiologia , Hipercalciúria/urina , Cálculos Renais/diagnóstico , Cálculos Renais/urina , RNA Ribossômico 16S/genética , Ratos , Eliminação Renal , Combinação Trimetoprima e Sulfametoxazol/administração & dosagem , Combinação Trimetoprima e Sulfametoxazol/efeitos adversos
20.
Kidney Int ; 99(3): 609-619, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159961

RESUMO

Metabolic acidosis induces osteoclastic bone resorption and inhibits osteoblastic bone formation. Previously we found that mice with a global deletion of the proton receptor OGR1 had increased bone density although both osteoblast and osteoclast activity were increased. To test whether direct effects on osteoclast OGR1 are critical for metabolic acidosis stimulated bone resorption, we generated knockout mice with an osteoclast-specific deletion of OGR1 (knockout mice). We studied bones from three-month old female mice and the differentiated osteoclasts derived from bone marrow of femurs from these knockout and wild type mice. MicroCT demonstrated increased density in tibiae and femurs but not in vertebrae of the knockout mice. Tartrate resistant acid phosphatase staining of tibia indicated a decrease in osteoclast number and surface area/bone surface from knockout compared to wild type mice. Osteoclasts derived from the marrow of knockout mice demonstrated decreased pit formation, osteoclast staining and osteoclast-specific gene expression compared to those from wild type mice. In response to metabolic acidosis, osteoclasts from knockout mice had decreased nuclear translocation of NFATc1, a transcriptional regulator of differentiation, and no increase in size or number compared to osteoclasts from wild type mice. Thus, loss of osteoclast OGR1 decreased both basal and metabolic acidosis-induced osteoclast activity indicating osteoclast OGR1 is important in mediating metabolic acidosis-induced bone resorption. Understanding the role of OGR1 in metabolic acidosis-induced bone resorption will provide insight into bone loss in acidotic patients with chronic kidney disease.


Assuntos
Acidose , Reabsorção Óssea , Acidose/genética , Animais , Reabsorção Óssea/genética , Diferenciação Celular , Feminino , Humanos , Camundongos , Camundongos Knockout , Osteoclastos , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...